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Conclusions and Future Work
• Determine the minimum required dataset size for the neural network to achieve meaningful and

accurate predictions.
• Develop a model capable of predicting and optimizing wall shear stress for every transitional flat plate

case, including both zero-pressure gradient (ZPG) and non-zero-pressure gradient (NZPG)
• An implemented hyperparameter optimization is expected to enhance the neural network predictions.
• A comprehensive statistical validation is currently underway.
• Evaluate the possibility of implementing a recurrent neural network (RNN) to capture spatial

correlations in 2D setups.
• Explore the use of reinforcement learning to address the inverse problem.
• Implement a convolutional neural network for 3D setups.
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Direct Problem

𝝈𝝈𝜸𝜸 𝑪𝑪𝑪𝑪𝑪𝑪 𝑪𝑪𝑪𝑪𝑪𝑪 𝜸𝜸𝒎𝒎𝒎𝒎𝒎𝒎 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪
Default 1 0.06 50 1𝑒𝑒 − 10 100 1000 1 2.2
Optimized 1.23 0.08 74.94 1𝑒𝑒 − 10 91.59 1074.77 0.97 1.97
Difference 23.3% 38.3% 50% 0% −18.4% 7.4% −2.8% −10.22%

Optimization
Validation 

• Multi-Layer Perceptron with 3 hidden layers, 128 neurons/layer, learning rate of 1e-3, Z-score normalization, ADAM optimizer. 
1024 simulations dataset, (80% training, 10% validation, 10% testing). 

• The results show the applicability of the framework and the capability of finding an optimum set of coefficients for a given case. 
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Summary
This study introduces a novel framework that harnesses the capabilities of deep neural networks to optimize the coefficients of a transition model, ensuring alignment with existing experimental data. Our
approach has been validated using the widely recognized Gamma transition model developed by Menter et al. [1] and the comprehensive ERCOFTAC T3 flat plate experiment series [2]. The process entails the
construction of an extensive database by adjusting the transition model coefficients, which then informs a fully connected neural network designed to predict wall shear stress. After training, the neural network
tackles the inverse problem of identifying the coefficient set that yields the closest match to experimental wall shear stress measurements.
The application of our method to a zero-pressure gradient transitional flat plate (T3A) resulted in an accurate prediction of the transition location. However, achieving a precise match for the entire wall shear
stress distribution was challenged by factors not included as neural network inputs, such as freestream velocity, turbulence intensity, and turbulence viscosity ratio.
Our results not only demonstrate the potential of our framework, but also establish a foundation for a tool that could revolutionize how researchers and industry professionals calibrate transition model
coefficients. This tool aims to provide valuable insights into performance through cost-effective RANS simulations, reducing the reliance on manual intervention and more expensive alternative methods.
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Inverse Problem
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Objective
“Develop a computational tool to automatically calibrate the coefficients of 

a RANS transition model to match experimental data accurately”.

Vectorization of flow visualization showing the structure of the 
transitional flow due to a laminar separation bubble over a flat 
plate due to an imposed negative pressure gradient [3]. 
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